Oxford Cambridge and RSA

# Level 3 Alternative Academic Qualification Cambridge Advanced Nationals in Applied Science 

## H051/H151 Unit F180: Fundamentals of science

## Sample Assessment Material (SAM)

Time allowed: 1 hour 30 minutes
XXX/XXXX
You may use:

- scientific calculator
- ruler

You should have:

- the Data, Formulae and Relationship Booklet



## INSTRUCTIONS

- Use black ink.
- Write your answer to each question in the space provided. You can use extra paper if you need to, but you must clearly show your candidate number, the centre number and the question numbers.
- In the live exam there might be lined pages at the end of the question paper for you to use if you need extra space. Remember, you must clearly show the question numbers.
- Answer all the questions.


## INFORMATION

- The total mark for this paper is 70.
- The marks for each question are shown in brackets [ ].
- This document consists of 20 pages.


## ADVICE

- Read each question carefully before you start your answer.

Answer all the questions.

## Section A (Biology) - $\mathbf{2 0}$ marks

1 A student is studying endosymbiosis in cells.
Endosymbiosis is seen when one organism lives inside of another and both organisms benefit from this relationship.
(a) Chloroplasts are thought to have evolved from a type of bacteria called cyanobacteria.

The diagram shows the structures of a cyanobacteria cell.

(i) Which three structures found in cyanobacteria are also found in plant cells?

Tick $(\checkmark)$ three boxes.

(ii) Some structures seen in the cyanobacteria cell in the diagram share the same function with components found in a chloroplast.

Complete the table to match the function of structures seen in the cyanobacteria cell to the component found in a chloroplast.

| Component found in a chloroplast | Structure seen in the cyanobacteria cell |
| :--- | :--- |
| Outer membrane |  |
| Stroma | $\ldots \ldots . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ~$ |
| Thylakoids | $\ldots$ |

(b) A scanning electron microscope (SEM) can be used to view an individual cyanobacteria cell. State one advantage and one disadvantage of using an SEM compared to a transmission electron microscope (TEM).

Advantage $\qquad$
$\qquad$
Disadvantage $\qquad$
$\qquad$

2 A group of scientists are investigating sperm cells in humans.
Normal-functioning sperm cells contain many mitochondria, packed into the middle piece.
(a) The aerobic phase of cellular respiration takes place inside each mitochondrion.

State two structural components of the mitochondria involved in the aerobic phase of respiration.

1
2. $\qquad$
(b) The scientists estimate that normal sperm cells contain 60 mitochondria in the middle piece.

The table shows relatively lower numbers of mitochondria found in a sample of abnormal sperm cells.

| 41 | 32 | 42 | 49 | 27 |
| :--- | :--- | :--- | :--- | :--- |
| 46 | 35 | 44 | 48 | 37 |

(i) Calculate the mean number of mitochondria found in the abnormal sperm cells.

> Mean number of mitochondria =
(ii) Calculate the percentage difference between the mean number of mitochondria found in abnormal sperm cells and the estimated number of mitochondria in normal sperm cells.

Give your answer to $\mathbf{2}$ decimal places.


Percentage difference $=$
(iii) Explain one impact of low numbers of mitochondria on the activity of abnormal sperm cells.
$\qquad$
$\qquad$
$\qquad$
$\qquad$

3 Pea protein is extracted from yellow peas.
(a) Pea protein provides a wide range of amino acids in the human diet.
(i) The amino acids can form dipeptides.

Describe the process of dipeptide formation.
$\qquad$
$\qquad$
$\qquad$
$\qquad$
(ii) Pea proteins have a secondary level of organisation.

What is the secondary level of organisation in proteins?
Tick $(\checkmark)$ one box.

Folding of a single polypeptide chain to form an $\alpha$-helix or $\beta$-pleated sheet


More than one polypeptide chain folded to form a 3D shape


The sequence of amino acids in a polypeptide chain $\square$

3D folding of a single polypeptide chain due to side-chain interactions
(b) Pea plants are grown as an agricultural crop.

Pea plants are often vulnerable to diseases.
(i) The distribution of diseased pea plants in a field is determined using a random sampling technique.
State one benefit and one limitation of using random sampling.

Benefit

$\qquad$
Limitation $\qquad$
$\qquad$
(ii) State one climatic abiotic factor affecting the distribution of pea plants in an agricultural field.

## Section B (Chemistry) - 20 marks

4 Sulfur (atomic number 16) is an element in the Earth's crust. It is released into the atmosphere when a volcano erupts.
(a) The two most abundant isotopes of sulfur are sulfur-32 and sulfur-34.
(i) Explain why sulfur-32 and sulfur-34 are described as isotopes of sulfur.
$\qquad$
$\qquad$
(ii) A scientist analyses a sample of sulfur from a volcano and finds that there are three isotopes present. They determine the relative masses and percentage (\%) abundances of these isotopes:

| Isotope | Symbol | Abundance (\%) |
| :---: | :---: | :---: |
| Sulfur-32 | ${ }^{32} \mathrm{~S}$ | 95.02 |
| Sulfur-33 | ${ }^{33} \mathrm{~S}$ | 0.77 |
| Sulfur-34 | ${ }^{34} \mathrm{~S}$ | 4.21 |

Calculate the relative atomic mass of the sample of sulfur.
Give your answer to two decimal places.

Relative atomic mass =
(b) Complete the electron configuration of sulfur, using sub-shell notation.

Electronic configuration of sulfur $=1 \mathrm{~s}^{2}$

5 Calcium carbonate, $\mathrm{CaCO}_{3}$, occurs naturally in the Earth's crust as limestone and chalk.
(a) Calcium carbonate decomposes when heated strongly to form calcium oxide and carbon dioxide.
$\mathrm{CaCO}_{3}(\mathrm{~s}) \rightarrow \mathrm{CaO}(\mathrm{s})+\mathrm{CO}_{2}(\mathrm{~g})$
(i) Calculate the number of moles of $\mathrm{CO}_{2}$ produced when 2000 g of $\mathrm{CaCO}_{3}$ decomposes.

Give your answer to an appropriate number of significant figures.
Molar mass of $\mathrm{CaCO}_{3}=100.1 \mathrm{~g} \mathrm{~mol}^{-1}$

Number of moles of $\mathrm{CO}_{2}=$
[2]
(ii) Calculate the volume of $\mathrm{CO}_{2}$ formed at room temperature and pressure (RTP).

Molar gas volume $=24.0 \mathrm{dm}^{3} \mathrm{~mol}^{-1}$ at RTP

Volume of $\mathrm{CO}_{2}=$
$\mathrm{dm}^{3}$ [1]
(b) Calcium carbonate reacts with nitric acid.

Explain the type of reaction between calcium carbonate and nitric acid.
$\qquad$
$\qquad$

6 Properties of substances are determined by the type of structure and bonding present.
(a)
(i) What is a covalent bond?
$\qquad$
$\qquad$
(ii) $\mathrm{Na}_{2} \mathrm{CO}_{3}$ contains the carbonate ion, $\mathrm{CO}_{3}{ }^{2-}$.

Draw a dot and cross diagram for the carbonate ion.
(b) A substance $\mathbf{X}$ has the following properties:

- a high melting point
- does not conduct electricity when solid
- does not conduct electricity when molten
- does not dissolve in water.

Which type of structure is substance $\mathbf{X}$ ?
Tick $(\checkmark)$ one box.
Giant ionic


Giant covalent

Giant metallic

Simple molecular

(c) Aluminium nitrate is an ionic compound.

What is the correct formula of aluminium nitrate?
Tick $(\checkmark)$ one box.


7 Catalysts are important in the chemical industry because they speed up chemical reactions and remain unchanged at the end of the reaction.
(a) Explain what is meant by the activation energy $\left(\mathrm{E}_{\mathrm{a}}\right)$ of a chemical reaction.
$\qquad$
$\qquad$
(b) Use the Boltzmann distribution curve to explain the effect of a catalyst on a reaction.

$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$

8 Butane and ethanol are both useful fuels.
(a) Write the balanced equation for the complete combustion of ethanol.
$\qquad$
(b) Explain one advantage of using ethanol as a fuel rather than butane.
$\qquad$
$\qquad$
(c) Butanal is a derivative of butane.

Draw the displayed formula of butanal.

## Section C (Physics) - 20 marks

9 Some cranes use electricity to raise, lower and move loads.
(a) What is potential difference?
$\qquad$
$\qquad$
(b) An electric crane lifts a 100 kg mass through a vertical height of 15 m in a time of 1.5 minutes.
(i) Calculate the work done to lift the mass.

## Work done =

J [2]
(ii) The crane is $37 \%$ efficient. The work done to lift the mass is approximately 15000 J .

Calculate the input power to the crane.

> Input power =
.W [3]
(c) The potential difference across the crane's motor is 600 V .

Calculate the current drawn by the crane.

> Current =

A [2]

10 A patient has visited their doctor to discuss bone pain that they are experiencing. They are referred for an X-ray to look for any problems in the bones.
(a) Explain how X -ray photons are produced in an X-ray tube.

You may draw a labelled diagram.
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$
(b) The nuclear medicine department of a hospital uses radionuclides to treat bone cancer. List three types of nuclear radiation in order of decreasing mass that can be emitted from radionuclides.

Heaviest 1
2
Lightest 3
(c) Explain how nuclear radiation can damage DNA indirectly.

Explain
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$
(d) Radionuclides are used in radiotherapy to treat bone cancers.

The radionuclide is:

- injected into the patient
- absorbed by the bones
- kills bone cells by ionising them.

The table shows the properties of four radionuclides that are available:

| Radionuclide | Emission | Half-life |
| :---: | :---: | :---: |
| A | gamma | 2.6 years |
| B | gamma | 6 hours |
| C | beta | 12.3 years |
| D | beta | 50 days |

Explain why Radionuclide $\mathbf{D}$ is chosen for this radiotherapy.
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$

## Section D (Practicals) - 10 marks

11 A laboratory technician prepares a temporary, stained microscope slide of a blood smear. The photomicrograph shows a white blood cell in the blood smear.

(a)
(i) Identify two differences between the white and red blood cells shown in the photomicrograph.
$\qquad$
$\qquad$
$\qquad$
$\qquad$
(ii) The actual vertical length of the white blood cell in the photomicrograph is $22 \mu \mathrm{~m}$. Calculate the magnification of the image.

$$
\text { Magnification }=\times
$$

(b) The technician uses an eyepiece graticule to measure the dimensions of blood cells.

- The eyepiece graticule is calibrated using a stage micrometer.
- The stage micrometer is viewed alongside the eyepiece graticule scale line.
- The eyepiece graticule scale line contains 100 divisions.

The drawing shows the two scale lines alongside each other.

(i) The distance $\mathbf{X}$ on the stage micrometer is $\mathbf{0 . 1} \mathbf{~ m m}$.

Calculate the length of an eyepiece graticule division, using the drawing.
$\qquad$ $\mu \mathrm{m}$ [3]
(ii) The technician uses the calibrated eyepiece graticule to estimate the width of five different white blood cells found in the stained blood smear.

The table shows the measurements recorded.

| Replicate | Width of white blood cell <br> $(\mu \mathrm{m})$ |
| :---: | :---: |
| 1 | 17.0 |
| 2 | 19.0 |
| 3 | 22.0 |
| 4 | 20.5 |
| 5 | 16.5 |

The width of the white blood cell shown in the photomicrograph is $18.0 \mu \mathrm{~m}$.
Explain the extent of the variation of measurements shown in the table.
$\qquad$
$\qquad$
$\qquad$
(iii) Explain one improvement to be made by the technician to obtain a more accurate estimate for the width of white blood cells.
$\qquad$
$\qquad$
$\qquad$

## END OF QUESTION PAPER

## THIS PAGE HAS BEEN LEFT INTENTIONALLY BLANK

## THIS PAGE HAS BEEN LEFT INTENTIONALLY BLANK

## THIS PAGE HAS BEEN LEFT INTENTIONALLY BLANK

This is sample assessment material for our specification. It is to help show how the live assessment materials will look. During the lifetime of the qualification you might see small adjustments to the assessment materials. This is part of continuous improvement, designed to help you and your students. We recommend you look at the most recent set of past papers where available.

## OCR <br> Oxford Cambridge and RSA

Copyright information:
Q11, xia yuan, Blood Cells with Neutrophil, www.gettyimages.co.uk
OCR is committed to seeking permission to reproduce all third-party content that it uses in its assessment materials. OCR has attempted to identify and contact all copyright holders whose work is used in this paper. To avoid the issue of disclosure of answer-related information to candidates, all copyright acknowledgements are reproduced in the OCR Copyright Acknowledgements Booklet. This is produced for each series of examinations and is freely available to download from our public website (www.ocr.org.uk) after the live examination series.

If OCR has unwittingly failed to correctly acknowledge or clear any third-party content in this assessment material OCR will be happy to correct its mistake at the earliest possible opportunity.
For queries or further information please contact the Copyright Team, OCR (Oxford, Cambridge and RSA Examinations), The Triangle Building, Shaftesbury Road, Cambridge CB2 8EA.

OCR is part of Cambridge University Press \& Assessment, which is itself a department of the University of Cambridge.

# Level 3 Alternative Academic Qualification Cambridge Advanced Nationals in Applied Science 

Unit F180: Fundamentals of science
Sample Assessment Material (SAM)

## Mark Scheme

This document has 13 pages.

## MARKING INSTRUCTIONS

## Crossed-out answers

If a student has crossed out an answer and written a clear alternative, do not mark the crossed-out answer.

If a student has crossed out an answer and not written a clear alternative, give the student the benefit of the doubt and mark the crossed-out answer if it's readable.

## Multiple choice question answers

When a multiple choice question has only one correct answer and a student has written two or more answers (even if one of these answers is correct), you should not award a mark.

## When a student writes more than one answer

## 1. Questions that ask for a set number (including 1) of short answers or points

If a question asks for a set number of short answers or points (e.g. two reasons for something), mark only the first set number of answers/points.

First mark the answers/points against any printed numbers on the answer lines, marking the first answer/point written against each printed number. Then, if students have not followed the printed numbers, mark the answers/points from left to right on each line and then line by line until the set number of answers/points have been marked. Do not mark the remaining answers/points.
2. Questions that ask for a single developed answer

If a student has written two or more answers to a question that only requires a single (developed) answer, and has not crossed out unintended answers, mark only the first answer.

## 3. Contradictory answers in points-based questions

When a student has written contradictory answers, do not award any marks, even if one of the answers is correct.

## Levels of Response marking

1. To determine the level start at the highest level and work down until you reach the level that best describes the answer
2. To determine the mark within the level, consider the following:

| Quality of the answer | Award mark |
| :--- | :--- |
| Consistently meets the criteria for this level | At the top of the level (6 and 9 mark questions) |
| Meets the criteria but with some inconsistency | At the middle of the level (9 mark questions) |
| On the borderline of this level and the one below | At the bottom of the level (6 and 9 mark <br> questions) |

## MARK SCHEME

Section A (Biology) - 20 marks


| 1 (a) (ii) |  |  |  |
| :---: | :---: | :---: | :---: |
| Max mark | $\begin{aligned} & 3 \\ & (\mathrm{PO} 2) \end{aligned}$ |  |  |
| Answer | Component o chloroplast | Structure in cyanobacteria cell | (1) |
|  | Outer membrane | Cell (surface) membrane |  |
|  | Stroma | Cytoplasm | (1) |
|  | Thylakoids | Photosynthetic membranes | (1) |
| Guidance |  |  |  |


| 1 (b) |  |
| :---: | :---: |
| Max mark | $\begin{aligned} & 2 \\ & \text { (PO1) } \end{aligned}$ |
| Answer | Any one from (advantage): <br> - SEM shows details of (cyanobacteria) cell surface (1) <br> - Does not require ultra-thin specimens (1) <br> - Less preparation time (1) <br> Any one from (disadvantage): <br> - SEM has a less powerful resolution/magnification (1) <br> - SEM cannot show internal details of (cyanobacteria) cell contents (1) |
| Guidance | Allow alternative correct answers. <br> Allow vice versa responses for TEM if clearly qualified. |


| 2 (a) |  |
| :--- | :--- |
| Max mark | 2 <br> (PO1) |
| Answer | Any two from: <br> $\bullet$ <br> • Cristae (1) <br> • (ATrix (1) <br> • (ATP synthase) particles on cristae surface (1) |
| Guidance | Allow alternative wording for 'particles'. |


| $\mathbf{2 ~ ( b ) ~ ( i ) ~}$ |  |
| :--- | :--- |
| Max mark | 1 <br> $(\mathrm{PO} 2)$ |
| Answer | $(41+32+42+49+27+46+35+44+48+37) / 10$ <br> $=\underline{40 \text { (to nearest whole number) }}(1)$ |
| Guidance | Do not allow 40.1 |


| 2 (b) (ii) |  |
| :--- | :--- |
| Max mark | 1 <br> $($ PO2 $)$ |
| Answer | (\% difference of mitochondria in sperm cells $=40 / 60 \times 100)=\underline{66.67}(1)$ |
| Guidance | Allow ECF using answer to 2(b)(i) $(\div 60 \times 100)$ |


| 2 (b) (iii) |  |
| :--- | :--- |
| Max mark | 2 <br> (PO1) |
| Answer | Impact on sperm cell activity <br> Any one from: <br> - Slower/no swimming OR tail/flagellum moves more slowly (1) <br> - Acrosome cannot discharge contents at fertilisation (1) <br> - Reduced chance of fertilising the egg/ovum (1) <br> Explanation <br> Any one from: <br> - Less energy released / ATP provided (1) <br> $\bullet$ <br> • Reduction in energy coupling processes (1) |
| Guidance | Allow alternative correct answers. |


| 3 (a) (i) |  |
| :--- | :--- |
| Max mark | 2 <br> (PO1) |
| Answer | Condensation reaction $/ \mathrm{H}_{2} \mathrm{O}$ released (1) <br> (Adjacent) amino and carboxyl groups involved (1) |
| Guidance | Allow a correct, labelled/annotated diagram. <br> Ignore 'dipeptide bond' for the 2 2 dd |


| 3 (a) (ii) |  |  |  |
| :---: | :---: | :---: | :---: |
| Max mark | $\begin{aligned} & 1 \\ & (\mathrm{PO} 1) \end{aligned}$ |  |  |
| Answer | Folding of a single polypeptide chain to form an $\alpha$ helix or $\beta$ pleated sheet. | $\checkmark$ | (1) |
|  | More than one polypeptide chain folded to form a three-dimensional shape. |  |  |
|  | The sequence of amino acids within a polypeptide chain. |  |  |
|  | Three-dimensional folding of a single polypeptide chain due to side chain interactions. |  |  |
| Guidance | If a candidate ticks more than one box, award zero for the item. |  |  |


| 3 (b) (i) |  |
| :---: | :---: |
| Max mark | $\begin{aligned} & 2 \\ & (\mathrm{PO} 1) \end{aligned}$ |
| Answer | Benefit <br> Any one from: <br> - Removes/reduces bias (1) <br> - (Relatively) quick to complete (1) <br> - Allows sampling of a subset of the (plant) population (1) <br> Limitation <br> Any one from: <br> - Not representative (of \% cover of diseased pea plants) (1) <br> - Less effective if distribution pattern is uneven/patchy (1) <br> - Difficult to estimate the number of sample areas/quadrats needed (1) <br> - Based on the assumption that the samples are (truly) random (1) <br> - May require a grid and use of randomised number generator (1) |
| Guidance | Allow alternative wording. Allow correct alternative answers. |


| 3 (b) (ii) |  |
| :--- | :--- |
| Max mark | 1 <br> (PO1) |
| Answer | Any one from: <br> • Light intensity (1) <br> • Wind speed/direction (1) <br> - \% humidity of air (1) <br> - Air temperature (1) |
| Guidance | Allow alternative correct answers. <br> Do not allow biotic/living factors. |

## Section B (Chemistry) - 20 marks

| 4 (a) (i) |  |
| :--- | :--- |
| Max mark | 1 <br> (PO1) |
| Answer | Both have 16 protons but S-34 has two more neutrons than S-32 (1) |
| Guidance | Use of sulfur-32 and sulfur-34 data is required for mark. |


| 4 (a) (ii) |  |
| :--- | :--- |
| Max mark | 2 <br> $(\mathrm{PO} 2)$ |
| Answer | $\operatorname{Ar}=\frac{(32 \times 95.02)+(33 \times 0.77)+(34 \times 4.21)}{100}$  <br>   <br>  (1) 32.09 (to 2 decimal places) (1) |
| Guidance | If answer $=32.09$ award 2 marks |


| 4 (b) |  |
| :--- | :--- |
| Max mark | 1 <br> $(\mathrm{PO} 2)$ |
| Answer | $\left(1 \mathrm{~s}^{2}\right) 2 \mathrm{~s}^{2} 2 \mathrm{p}^{6} 3 \mathrm{~s}^{2} 3 \mathrm{p}^{4} \quad(1)$ |
| Guidance |  |


| $\mathbf{5}$ (a) (i) |  |
| :--- | :--- |
| Max mark | 2 <br> (PO2) |
| Answer | Moles of $\mathrm{CaCO}_{3}=2000 / 100.1=19.98(1)$ <br> Moles of $\mathrm{CO}_{2}=19.98$ (to 4 significant figures) (1) |
| Guidance | If answer $=19.98$ award 2 marks <br> Do not allow values quoted that are greater than 4 significant figures |


| $\mathbf{5}$ (a) (ii) |  |
| :--- | :--- |
| Max mark | 1 <br> (PO2) |
| Answer | Volume of $\mathrm{CO}_{2}=19.98 \times 24=479.52\left(\mathrm{dm}^{3}\right)(1)$ |
| Guidance | Allow $480\left(\mathrm{dm}^{3}\right)$ for 1 mark <br> Allow ECF from 2(a)(i) |


| $\boldsymbol{5}$ (b) |  |
| :--- | :--- |
| Max mark | 1 <br> $($ PO1 $)$ |
| Answer | Neutralisation because an acid is reacting with a base to form a salt (1) |
| Guidance | Allow Neutralisation because the $\mathrm{H}^{+}$ions and $\mathrm{OH}^{-}$ions are reacting to form <br> water. |


| 6 (a) (i) |  |
| :--- | :--- |
| Max mark | 1 <br> (PO1) |
| Answer | A covalent bond is the strong electrostatic attraction between a shared pair of <br> electrons and the nuclei of the bonded atoms (1) |
| Guidance | Do not allow electrons are shared. |


| 6 (a) (ii) |  |
| :--- | :--- |
| Max mark | 2 <br> (PO2) |
| Answer | First mark for bonding around central C atom (1) <br> Guidance |


| $\mathbf{6}$ (b) |  |
| :--- | :--- |
| Max mark | 1 <br> (PO1) |
| Answer | Giant covalent (1) |
| Guidance |  |


| 6 (c) |  |
| :--- | :--- |
| Max mark | 1 |
| $(\mathrm{PO} 2)$ |  |
| Answer | ${\mathrm{Al}\left(\mathrm{NO}_{3}\right)_{3}(1)}^{\text {Guidance }}$ |


| $\mathbf{7}$ (a) |  |
| :--- | :--- |
| Max mark | 1 <br> (PO1) |
| Answer | Activation energy is the minimum amount of energy required for a reaction to <br> occur. (1) |
| Guidance |  |


| $\mathbf{7}$ (b) |  |
| :--- | :--- |
| Max mark | 2 <br> (PO1) |
| Answer | •The graph shows a greater area under the curve when a catalyst is used <br> (1) <br> This means that more molecules have energy greater than the activation <br> energy (1) <br> Guidance |


| $\mathbf{8}(\mathbf{a})$ |  |
| :--- | :--- |
| Max mark | 2 <br> $(\mathrm{PO} 2)$ |
| Answer | $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}+3 \mathrm{O}_{2} \rightarrow 2 \mathrm{CO}_{2}+3 \mathrm{H}_{2} \mathrm{O}(2)$ |
| Guidance | Mark 1: correct left hand side <br> Mark 2: correct right hand side |


| $\mathbf{8}$ (b) |  |
| :--- | :--- |
| Max mark | 1 <br> (PO1) |
| Answer | Any one from: <br> $\bullet$ <br> - Ethanol is a renewable source so won't run out like butane (1) <br> - Ethanol burns more cleanly so produces less $\mathrm{CO}_{2}$ compared to butane (1) |
| Guidance | Allow alternative correct answers. |


| 8 (c) |  |
| :---: | :---: |
| Max mark | $\begin{aligned} & 1 \\ & (\mathrm{PO} 1) \end{aligned}$ |
| Answer |  |
| Guidance | Do not allow structural formulae: |

## Section C (Physics) - 20 marks

| $\mathbf{9}$ (a) |  |
| :--- | :--- |
| Max mark | 1 <br> (PO1) |
| Answer | Work done per unit charge (1) |
| Guidance | Allow alternative correct answers |


| 9 (b) (i) |  |
| :--- | :--- |
| Max mark | 2 <br> $(\mathrm{PO} 2)$ |
| Answer | $\Delta \mathrm{GPE}=100 \times 9.81 \times 15(1)$ <br> $14715(\mathrm{~J})(1)$ |
| Guidance | If answer $=14715(\mathrm{~J})$ award 2 marks <br> Answer must be to 3 or more sig. figs. <br> Do not allow $15000(\mathrm{~J})$ |


| $\mathbf{9}$ (b) (ii) |  |
| :--- | :--- |
| Max mark | 3 <br> $($ PO2 $)$ |
| Answer | Work done on crane (total energy transferred) $14715 \div 0.37=39770(\mathrm{~J})(1)$ <br> $39770 \div 90(1)$ <br> $=441.891$ (recurring) $(\mathrm{W})(1)$ |
| Guidance | If answer $=441.891$ (W) award 3 marks |


| $\mathbf{9}(\mathbf{c})$ |  |
| :--- | :--- |
| Max mark | 2 <br> $(\mathrm{PO} 2)$ |
| Answer | $\mathrm{I}=441.891 \div 600 \quad(1)$ <br> $=0.736(\mathrm{~A}) \quad(1)$ |
| Guidance | If answer $=0.736(\mathrm{~W})$ or $0.736486(\mathrm{~W})$ award 2 marks |


| $\mathbf{1 0}$ (a) |  |
| :--- | :--- |
| Max mark | 3 <br> (PO1) |
| Answer | - High voltage (supply) connected between cathode and anode (1) <br> - (Accelerated) electrons hit the target/metal/anode (1) <br> $\bullet$ KE is transformed into X-ray (photons) (1) |
| Guidance |  |


| $\mathbf{1 0}$ (b) |  |
| :--- | :--- |
| Max mark | 1 <br> (PO1) |
| Answer | (Heaviest) Alpha <br> Beta <br> (Lightest) Gamma <br> (1) |
| Guidance |  |


| $\mathbf{1 0}$ (c) |  |
| :--- | :--- |
| Max mark | 4 <br> (PO1) |
| Answer | - Gamma radiation is able to create free radicals from water (1) <br> - because the radiation is high frequency and therefore high energy (1) <br> - The free radicals from the water ionise the DNA (1) <br> because they have an unpaired electron which means they are highly <br> reactive (1) |
| Guidance | Allow gamma rays |


| 10 (d) |  |
| :---: | :---: |
| Max mark | $\begin{aligned} & 4 \\ & (\mathrm{PO} 2) \end{aligned}$ |
| Answer | Any four from: <br> - $D$ is a beta emitter so is more ionising than radionuclides $A$ and $B$ (1) <br> - $D$ is a beta emitter so will be energetic enough to kill/ionise/destroy the tumour cells (1) <br> - D has a shorter half-life than C so will be active in the patient for less time / will expose the patient to less ionising radiation (1) <br> - Gamma rays could damage healthy tissue due to its penetrating power (1) <br> - Half-life of radionuclide A and C is too long, as they would expose the patient to excessive ionising radiation (1) |
| Guidance |  |

## Section D (Practicals) - 10 marks

| 11 (a) (i) |  |
| :---: | :---: |
| Max mark | $\begin{aligned} & 2 \\ & (\mathrm{PO}) \end{aligned}$ |
| Answer | Any two from: <br> - WBCs are larger than RBCs (1) <br> - RBCs have a great density than WBCs (1) <br> - WBC/monocyte/leukocyte has a large/prominent nucleus OR RBCs lack a nucleus (1) <br> - Nucleus in the WBC contains a nucleolus (1) <br> - WBCs appear to have a thinner/lighter centre OR are folded/crenated/disclike (1) <br> - Nucleus in the white blood cell is heavily stained (1) <br> - RBCs are not heavily stained (1) |
| Guidance | Allow alternative wording. <br> Allow alternative correct answers. |


| $\mathbf{1 1}$ (a) (ii) |  |
| :--- | :--- |
| Max mark | 3 <br> $(\mathrm{PO} 2)$ |
| Answer | observed size $=15 \mathrm{~mm}($ Allow $+/-2 \mathrm{~mm})(1)$ <br> magnification $=\left(15 \times 10^{3}\right) \div 22(1)$ <br> $=681.8 \times(1)$ |
| Guidance | If answer $=681.8 / 682 \times$ give 3 marks. Allow range 590.9 to $772.7 \times$ <br> If not, give 1 mark $(\mathbf{m a x})$ for correct use of the equation. |


| $\mathbf{1 1}$ (b) (i) |  |
| :--- | :--- |
| Max mark | 3 <br> (PO2) |
| Answer | length of $\mathbf{X}=0.1 \mathrm{~mm}=100 \mu \mathrm{~m}(1)$ <br> 40 eyepiece graticule divisions $=100 \mu \mathrm{~m} \mathrm{(1)}$ <br> 1 eyepiece graticule division $=100 \div 40=2.5 \mu \mathrm{~m}(1)$ |
| Guidance | If answer $=2.5 \mu \mathrm{~m}$ give $\mathbf{2}$ marks. <br> If not, give $\mathbf{1}$ mark (max.) for any one of the calculation steps |


| $\mathbf{1 1}$ (b) (ii) |  |
| :--- | :--- |
| Max mark | 1 <br> (PO2) |
|  | Any one from: <br> $\bullet \quad$ Not perfectly circular, so random/measurement error in measuring width of <br> white blood cells (1) <br> - White blood cells may be at different stages of development/growth (1) |
| Guidance | Allow alternative wording. <br> Allow correct alternative answers. |


| $\mathbf{1 1}$ (b) (iii) |  |
| :--- | :--- |
| Max mark | 1 <br> (PO2) |
| Answer | Any one from: <br> $\bullet$ <br> - Use a higher resolution graticule to get more precise data (1) <br> - Use a larger width of each blood cell by recording multiple measurements (1) |
| Guidance replicates to remove outliers (1) |  |$\quad$| Allow alternative wording. |
| :--- |
| Allow correct alternative answers. |

Oxford Cambridge and RSA

# Level 3 Alternative Academic Qualification Cambridge Advanced Nationals in Applied Science 

H051/H151 Unit F180: Fundamentals of science
Sample Assessment Material (SAM)

Data, Formulae and Relationships Booklet


|  |  |
| :---: | :---: |
|  | 응으흐를 |
|  |  |
|  | $\bigcirc$ |
|  |  |
|  |  |
|  |  |
|  | 8 ¢ $\underbrace{\text { E }}$ |
| ®3 \％ |  |
|  |  |
|  | ®®으르를 |
|  |  |
|  |  |
|  | 8 |
|  | かく皆喜 |

## General information

| Physical constant | Symbol | Value and units |
| :--- | :--- | :--- |
| Acceleration of free fall | $g$ | $9.81 \mathrm{~m} \mathrm{~s}^{-2}$ |
| Avogadro constant | $N_{\mathrm{A}}$ | $6.02 \times 10^{23} \mathrm{~mol}^{-1}$ |
| Elementary charge | $e$ | $1.60 \times 10^{-19} \mathrm{C}$ |
| Electron rest mass | $m_{\mathrm{e}}$ | $9.11 \times 10^{-31} \mathrm{~kg}$ |
| Neutron rest mass | $m_{\mathrm{n}}$ | $1.675 \times 10^{-27} \mathrm{~kg}$ |
| Planck constant | $h$ | $6.63 \times 10^{-34} \mathrm{Js}$ |
| Proton rest mass | $m_{\mathrm{p}}$ | $1.673 \times 10^{-27} \mathrm{~kg}$ |
| Specific heat capacity of water | $c$ | $4180 \mathrm{Jkg}^{-1} \mathrm{C}^{-1}$ |
| Speed of light in a vacuum | $c$ | $3.00 \times 10^{8} \mathrm{~m} \mathrm{~s}^{-1}$ |
| Molar gas volume <br> (at room temperature and pressure, RTP) | $V_{\mathrm{m}}$ | $24.0 \mathrm{dm}^{3} \mathrm{~mol}^{-1}$ |
| Euler's number | $e$ | 2.718 |

Conversion factors: $1 \mathrm{eV}=1.60 \times 10^{-19} \mathrm{~J}$

## Mathematical Equations

Circumference of circle $=2 \pi r$
Area of circle $=\pi r^{2}$
Curved surface area of cylinder $=2 \pi r h$
Surface area of sphere $=4 \pi r^{2}$
Area of trapezium $=1 / 2(a+b) h$
Volume of cylinder $=\pi r^{2} h$
Volume of sphere $=\frac{4}{3} \pi r^{3}$

## Formulae and relationships for Unit F180

| B1 Cell structure and microscopy |  |
| :--- | :--- |
| Total magnification $=$ magnification of objective lens $\times$ magnification of eyepiece lens | $M_{T}=M_{\mathrm{O}} \times M_{\mathrm{E}}$ |
| Magnification $=\frac{\text { observed size }}{\text { actual size }}$ |  |

## B4 Biodiversity and ecosystems

Percentage efficiency $=\frac{\text { useful energy transferred }}{\text { total energy transferred }} \times 100 \%$

## C1 Atomic Structure and the Periodic Table

Relative atomic mass $=\sum \frac{\text { (isotope mass } \times \text { isotope abundance) }}{100}$

| C2 Amount of substance |  |
| :--- | :--- |
| Amount of substance $=\frac{\text { mass of substance }}{\text { molar mass }}$ | $n=\frac{m}{M}$ |
| Concentration $=\frac{\text { amount of solute }}{\text { volume }}$ | $c=\frac{n}{V}$ |
| Concentration $=\frac{\text { mass of solute }}{\text { volume }}$ | $c=\frac{m}{V}$ |
| Amount of gas $=\frac{\text { volume of gas }}{24}$ | $n=\frac{V}{24}$ |


| C4 Rates of Reaction and Enthalpy Changes |  |
| :--- | :--- |
| Thermal energy $=$ mass $\times$ specific heat capacity $\times$ change in temperature | $Q=m c \Delta \theta$ |


| P1 Electricity |  |
| :--- | :--- |
| Charge $=$ current $\times$ time | $Q=I t$ |
| Potential difference $=$ current $\times$ resistance | $V=I R$ |
| Power $=$ current $\times$ potential difference | $P=I V$ |
| Power $=(\text { current })^{2} \times$ resistance | $P=I^{2} R$ |
| Power $=\frac{(\text { potential difference })^{2}}{\text { resistance }}$ | $P=\frac{V^{2}}{R}$ |
| Work done $=$ potential difference $\times$ current $\times$ time | $W=V I t$ |
| Work done $=$ potential difference $\times$ charge | $W=V Q$ |
| Total resistance in series $=$ resistance of resistor $1+$ resistance of resistor 2 $+\ldots$ | $R_{T}=$ <br> $R_{1}+R_{2}+\cdots$ <br> Total resistance in parallel $=\frac{1}{\text { Resistance of resistor 1 }}+\frac{1}{\text { Resistance of resistor 2 }}+\ldots$ <br> $\frac{1}{R_{T}}=$ <br> $R_{1}+\frac{1}{R_{2}}+\cdots$ |


| P2 Forces \& Motion |  |
| :---: | :---: |
| Work done $=$ force $\times$ displacement | $W=F s$ |
| Work done $=$ force $\times$ displacement $\times \cos \theta$ | $W=F s \cos \theta$ |
| Kinetic energy $=1 / 2 \times$ mass $\times(\text { velocity })^{2}$ | $E=\frac{1}{2} m v^{2}$ |
| Gravitational potential energy $=$ mass $\times$ acceleration of free fall $\times$ height | $E=m g \Delta h$ |
| Elastic potential energy $=1 / 2 \times$ force $\times$ extension $=1 / 2 \times$ spring constant $\times(\text { extension })^{2}$ | $\begin{aligned} & E=\frac{1}{2} F x \\ & =\frac{1}{2} k x^{2} \end{aligned}$ |
| $\text { Power }=\frac{\text { work done }}{\text { time }}$ | $P=\frac{W}{t}$ |
| $\text { Efficiency }=\frac{\text { useful energy transferred }}{\text { total energy transferred }}$ |  |
| Net force $=$ mass $\times$ acceleration | $F=m a$ |
| $\text { Average velocity }=\frac{\text { displacement }}{\text { time taken }}$ | $v=\frac{s}{t}$ |
| $\text { Acceleration }=\frac{\text { final velocity }- \text { initial velocity }}{\text { time taken }}$ | $a=\frac{v-u}{t}$ |
| Final velocity $=$ initial velocity + ( acceleration $\times$ time taken $)$ | $v=u+a t$ |
| Displacement $=1 / 2($ initial velocity + final velocity $) \times$ time taken | $s=\frac{1}{2}(u+v) t$ |
| Displacement $=($ initial velocity $\times$ time taken $)+\left(1 / 2 \times\right.$ acceleration $\times$ time taken $\left.{ }^{2}\right)$ | $s=u t+\frac{1}{2} a t^{2}$ |
| Final velocity ${ }^{2}=$ initial $^{\text {velocity }}{ }^{2}+2 \times$ acceleration $\times$ displacement | $v^{2}=u^{2}+2 a s$ |


| P3.1 Medical Physics | $E=h f$ |
| :--- | :--- |
| Energy of a photon $=$ Planck constant $\times$ frequency | $E=\frac{h c}{\lambda}$ |
| Energy of a photon $=\frac{\text { Planck constant } \times \text { speed of light in a vacuum }}{\text { wavelength }}$ | $I=I_{0} e^{-\mu x}$ |
| Intensity of emergent beam <br> $=$ intensity of incident beam $\times \mathrm{e}^{- \text {linear attenuation coefficient } \times \text { distance travelled through the medium }}$ | $\mu_{\mathrm{m}}=\frac{\mu}{\rho}$ |
| Mass attenuation coefficient $=\frac{\text { linear attenuation coefficient }}{\text { density of medium }}$ | $\rho=\frac{m}{V}$ |
| Density $=\frac{\text { mass }}{\text { volume }}$ |  |


| Frequency $=\frac{1}{\text { time period }}$ | $f=\frac{1}{T}$ |
| :--- | :--- |
| Wave speed $=$ frequency $\times$ wavelength | $v=f \lambda$ |
| Intensity $=\frac{\text { power }}{\text { area }}$ | $I=\frac{P}{A}$ |
| Acoustic impedance $=$ density of medium $\times$ speed of sound in the medium | $Z=\rho c$ |
| Intensity reflection coefficient $=\frac{\text { intensity of reflected wave }}{\text { intensity of incident wave }}$ | $\alpha=\frac{I_{r}}{I_{0}}$ |
| Intensity reflection coefficient $=$ (acoustic impedance of second medium |  |
| $-\frac{Z_{2}-Z_{1}}{\text { acoustic impedance of initial medium }}{ }^{2}$ |  |


| P3.2 Radioactivity |  |
| :--- | :--- |
| Physical half-life $=\frac{t_{1}=\frac{0.693}{2}}{\text { radioactive decay constant }}$ |  |
| $1 /$ effective half-life $=1 /$ physical half-life $+1 /$ biological half-life | $\frac{1}{t_{\mathrm{E}}}=\frac{1}{t_{1}}+\frac{1}{t_{\mathrm{B}}}$ |
| Activity $=$ radioactive decay constant $\times$ number of undecayed nuclei | $A=\lambda N$ |
| Number of undecayed nuclei <br> $=$ <br> initial number of undecayed nuclei $\times \mathrm{e}^{-r a d i o a c t i v e ~ d e c a y ~ c o n s t a n t ~} \times$ time | $N=N_{0} \mathrm{e}^{-\lambda t}$ |
| Activity $=$ initial activity $\times \mathrm{e}^{- \text {radioactive decay constant } \times \text { time }}$ | $A=A_{0} \mathrm{e}^{-\lambda t}$ |

