Friday 10 June 2022 - Afternoon # Level 3 Cambridge Technical in Engineering **05822/05823/05824/05825/05873** Unit 4: Principles of electrical and electronic engineering Time allowed: 1 hour 30 minutes C304/2206 ### You must have: - the Formula Booklet for Level 3 Cambridge Technical in Engineering (inside this document) - a ruler (cm/mm) - · a scientific calculator | Please write clea | arly in black ink. | |-------------------|--------------------| | Centre number | Candidate number | | First name(s) | | | Last name | | | Date of birth | D D M M Y Y Y | # **INSTRUCTIONS** - Use black ink. You can use an HB pencil, but only for graphs and diagrams. - Write your answer to each question in the space provided. If you need extra space use the lined pages at the end of this booklet. The question numbers must be clearly shown. - · Answer all the questions. - · Where appropriate, your answer should be supported with working. - Give your final answers to a degree of accuracy that is appropriate to the context. ### **INFORMATION** - The total mark for this paper is 60. - The marks for each question are shown in brackets []. - · This document has 20 pages. ### **ADVICE** · Read each question carefully before you start your answer. | FOR EXAMINER USE ONLY | | | |-----------------------|------|--| | Question No | Mark | | | 1 | /11 | | | 2 | /10 | | | 3 | /11 | | | 4 | /9 | | | 5 | /8 | | | 6 /11 | | | | Total | /60 | | © OCR 2022 [D/506/7269] OCR is an exempt Charity C304/2206/9 Turn over # Answer all the questions. - 1 When light shines on a solar panel it generates DC electricity. - (a) The solar panel provides current to the load resistor. An ammeter measures the current through the load resistor. A voltmeter measures the voltage across the load resistor. Draw **on Fig. 1** to show the ammeter, voltmeter and necessary connections to complete the circuit. Fig. 1 [2] (b) When a load resistor of 38Ω is used in the circuit the current through the load resistor is $150\,\text{mA}$. Calculate the voltage across the load resistor. | (c) | Calculate the power dissipated in a 38Ω load resistor when the current through the load resistor is 150mA . | |-----|---| | | | | | | | | Power dissipated in the load resistor = | | | Question 1(d) begins on page 4 | (d) An engineer measures the voltage and current for different values of load resistor and calculates the power for each measurement. Fig. 2 shows the graph of power against resistance. Fig. 2 (i) Calculate the current from the solar panel when the load resistance is 27Ω . Current = A [3] (ii) State the internal resistance of the solar panel. Internal resistance of the solar panel = Ω [1] | (iii) | Explain your answer to part (d)(ii). | |-------|--------------------------------------| | | | | | | | | | | | | | | [2] | Turn over for the next question 2 Fig. 3 shows a series RL circuit connected to an AC supply. Fig. 3 - (a) The AC supply has a frequency (f) of $20 \, \text{kHz}$. - (i) Calculate the reactance (X_L) of the inductor at a frequency of $20\,\mathrm{kHz}$. $$X_L = \dots \Omega$$ [2] (ii) Calculate the impedance (Z) of the series RL circuit at a frequency of 20 kHz. Z=......Ω[2] | (b) | A 7.2 nF capacitor (C) is connected in series with the 470Ω resistor (R) and the 2.2 mH | |------------|---| | | inductor (L) to form a series RLC circuit connected to the AC supply. | | (i) | Draw a diagram of the series RLC circuit and AC supply. | |-----|---| | | Label the components in the circuit with their values. | | r | 4 | 1 | |---|---|---| | | | | | | | | | | _ | • | (ii) State the value of the 7.2 nF capacitor (C) in farads. (iii) Complete the table to show how the impedance of the RLC series circuit changes with frequency. | Frequency f/Hz | Reactance of inductor X_L/Ω | Reactance of capacitor X_C/Ω | Impedance of series RLC circuit Z/Ω | |----------------|------------------------------------|-------------------------------------|--| | 25000 | 346 | 884 | | | 40000 | 553 | | 470 | | 50000 | | 442 | | [4] 3 The diagram of a DC motor connected to a battery is shown in Fig. 4. (a) Put a ring around the name of the DC motor shown in Fig. 4. | | permanent magnet | series-wound | shaded pole | shunt-wound | |-----|--------------------------|---------------------------|-------------|-------------| | | | | | [1] | | (b) | Suggest why this type of | motor is suitable for a f | ần. | | | | | | | | | | | | | | | | | | | [1] | (c) When the voltage (V) across the armature is 12 V and the motor is turning quickly the current through the armature (I_a) is 2.2 A. The armature resistance (R_a) is 0.9 Ω . Calculate the EMF (E) generated in the armature. Give the units for your answer. (d) When a 12 V supply is connected to the motor the current in the field winding is 1.4 A. Calculate the resistance of the field winding (R_f) . $$R_f = \dots \Omega$$ [1] (e) Fig. 5 shows a switch and resistor added to the circuit of Fig. 4 so that the fan can run at two different speeds. Fig. 5 (i) Complete the sentences in the paragraph below by choosing the most appropriate words from the list. Use each word once, more than once or not at all. | constant | increased | reduced | zero | | |------------------------|----------------------------|------------------------------------|------------|--| | When the switch SW1 | is closed the current in | n the field winding is 1.4 A | and the | | | motor spins. When the | e switch SW1 is opened | d the resistor, R, is in series | s with the | | | field winding. Therefo | ore, the current in the fi | eld winding (I_f) is | | | | | and the m | agnetic flux (ϕ) in the motor | or is | | | | This mea | ans that the speed of the mo | otor is | | | | | | [3] | | (ii) Calculate the current in the field winding (I_f) when the switch, SW1, is open so that the resistor, R, is in series with the field winding. $I_f = \dots A [2]$ - 4 A wireless router is used to provide internet access for people in an office. The wireless router requires a low voltage DC power supply. - (a) Complete the block diagram in **Fig. 6** of a stabilised power supply for the wireless router. Choose from the terms below. | (b) | Describe the function of the rectifier in a stabilised power supply. | |-----|--| | | | | | | | | [2 | (c) The circuit diagram in **Fig. 7** shows how a diode is used to protect the circuit in the wireless router from being damaged due to being connected the wrong way around. Fig. 7 | State how the diode protects the wireless router. | | |---|-----| | | | | | | | | [1] | (d) Fig. 8 shows the wireless router connected to the AC mains supply and a battery backup power supply. Fig. 8 Complete the sentences in the paragraph below by choosing the most appropriate phrases from the list. Use each phrase once, more than once or not at all. | being
charged | limiting
the
current | powering
the
wireless
router | rectifying
the
supply | |----------------------------|----------------------------|---------------------------------------|-----------------------------| | When the AC mains supp | oly is not working, t | he battery backup power | r supply is | | | | When t | he AC mains supply | | is working, the stabilised | power supply is | | | | and battery b | ackup power supply | / is | | | | | | [3] | 5 The block diagram of an electronic thermometer is shown in Fig. 9. (a) When the temperature sensor produces 30 mV the voltmeter shows -3 V. Calculate the voltage gain of the amplifier. - (b) An op-amp amplifier is used for the amplifier in Fig. 9. - (i) Name the type of op-amp amplifier circuit used in Fig. 9.[1] (ii) Complete Fig. 10 to show the diagram for the amplifier circuit named in part (b)(i). Label any components added and include their values. 0V — **Fig. 10** 6 The circuit symbol for a D type flip-flop is shown in Fig. 11. **Fig. 11** (a) Complete the paragraph below by choosing the most appropriate terms from the list. Each term may be used once, more than once or not at all. | Clock | changed
from high
to low | changed
from low
to high | D | held
high | held
low | Q | |-------------|--------------------------------|--------------------------------|---|--------------|-------------|-----| | A rising ed | lge triggered D-ty | pe flip-flop is trig | gered who | en the | | | | | | | | connect | ion is | | | | | | | | | | | To make Q | high, the | | ••••• | | | | | connection | ı is | | • | | whilst | the | | D-type flip | o-flop is triggered. | | | | | | © OCR 2022 Turn over [4] **(b)** Draw a line to join each statement about logic gates to the most appropriate name of logic gate. There will be some logic gates without a connecting line. # Statements about logic gate AND gate The output is only high when all the inputs are low. The output is only high when only one of the inputs is high. NAND gate NOR gate OR gate XOR gate [3] (c) Fig. 12 shows a logic gate circuit. Complete the truth table for this circuit. | A | В | C | D | E | F | G | |---|---|---|---|---|---|---| | 0 | 0 | 0 | | | | | | 0 | 0 | 1 | | | | | | 0 | 1 | 0 | | | | | | 0 | 1 | 1 | | | | | | 1 | 0 | 0 | | | | | | 1 | 0 | 1 | | | | | | 1 | 1 | 0 | | | | | | 1 | 1 | 1 | | | | | [4] # END OF QUESTION PAPER # ADDITIONAL ANSWER SPACE If additional answer space is required, you should use the following lined pages. The question numbers must be clearly shown – for example, 3(b) or 4(b). ## Copyright Information OCR is committed to seeking permission to reproduce all third-party content that it uses in its assessment materials. OCR has attempted to identify and contact all copyright holders whose work is used in this paper. To avoid the issue of disclosure of answer-related information to candidates, all copyright acknowledgements are reproduced in the OCR Copyright Acknowledgements Booklet. This is produced for each series of examinations and is freely available to download from our public website (www.ocr.org.uk) after the live examination series. If OCR has unwittingly failed to correctly acknowledge or clear any third-party content in this assessment material, OCR will be happy to correct its mistake at the earliest possible opportunity. For queries or further information please contact the Copyright Team, OCR (Oxford Cambridge and RSA Examinations), The Triangle Building, Shaftesbury Road, Cambridge CB2 8EA. OCR is part of Cambridge University Press & Assessment, which is itself a department of the University of Cambridge. © OCR 2022