

Tuesday 17 May 2022 – Morning AS Level Chemistry B (Salters)

H033/01 Foundations of chemistry

Time allowed: 1 hour 30 minutes

You must have:

• the Data Sheet for Chemistry B

You can use:

- · a scientific or graphical calculator
- an HB pencil

DI :	· .			_				
Please write cle	arıy ın	black	(INK.	Do no	ot writ	e in the barcodes.		
Centre number						Candidate number		
First name(s)								
Last name								

INSTRUCTIONS

- Use black ink. You can use an HB pencil, but only for graphs and diagrams.
- Write your answer to each question in the space provided. If you need extra space use the lined pages at the end of this booklet. The question numbers must be clearly shown.
- · Answer all the questions.
- Where appropriate, your answer should be supported with working. Marks might be given for using a correct method, even if your answer is wrong.

INFORMATION

- The total mark for this paper is 70.
- The marks for each question are shown in brackets [].
- This document has 16 pages.

ADVICE

· Read each question carefully before you start your answer.

SECTION A

You should spend a maximum of 25 minutes on this section.

Answer **all** the questions.

Write your answer to each question in the box provided.

	ich ion has the same	electron configuration	Tas Ca- ?		
A	Al ³⁺				
В	Br-				
С	K ⁺				
D	Mg ²⁺				
You	r answer				
Sod	lium has a lower melti	ng point than magne	sium.		
Wha	at is a reason for this?	•			
Α	Magnesium has mor	e delocalised electro	ns per atom.		
В	Magnesium is more	ionic.			
С	Melting points decre	ase across Period 3.			
D	Sodium has a covale	ent structure.			
	r answer	ne properties of the s	solids shown?		
	Solid	Melting point	Electrical conductivity		
A	Solid graphite	Melting point high			
		-	conductivity	_	
A	graphite	high	poor	_	

Which compound is a saturated aliphatic hydrocarbon?

	Α	benzene	
	В	cyclohexane	
	С	cyclohexene	
	D	hexene	
	You	er answer	[1]
5	Whi	ich reaction has the largest atom economy for the formation of the organic product?	
	A	$C_2H_4 + Br_2 \rightarrow C_2H_4Br_2$	
	В	$C_2H_5Br + Br_2 \rightarrow C_2H_4Br_2 + HBr$	
	С	$C_6H_6 + Br_2 \rightarrow C_6H_5Br + HBr$	
	D	$C_2H_6 + Br_2 \rightarrow C_2H_5Br + HBr$	
	You	r answer	[1]
6	Wha	at is a correct property of hydrogen iodide gas?	
	A	It has high thermal stability.	
	В	It is neutral in solution.	
	С	It is unreactive with ammonia.	
	D	It reduces sulfuric acid to hydrogen sulfide.	
	You	r answer	[1]
7	Whi	ich statement correctly describes the reaction below?	
	C ₄ F	$H_9Cl + NH_3 \rightarrow C_4H_9NH_2 + HCl$	
	A	Ammonia adds to a haloalkane to form an amine.	
	В	Ammonia is displacing hydrogen chloride.	
	С	An amine is formed in a substitution reaction.	
	D	Chloropropane is reacting with ammonia.	
	You	r answer	[1]

8	Which of these compounds will have the highest boiling point?							
	Α	CH ₃ CHO						
	В	CH ₃ CH ₂ OH						
	С	HOCH ₂ CH ₂ OH						
	D	CH ₃ OCH ₃						
	You	r answer	[1]					
9	Wha	at is the final stage in the purification of a liquid organic product?						
	Α	distillation						
	В	drying						
	С	neutralisation						
	D	separation						
	You	r answer	[1]					
10	Wha	at is a correct formula for an iron salt?						
	Α	FeCO ₃						
	В	$Fe_2(NO_3)_3$						
	С	FeNO ₃						
	D	Fe ₂ SO ₄						
	You	r answer	[1]					
11	Whi	ch molecule has the largest bond angle?						
	Α	BF ₃						
	В	CHF ₃						
	С	NF ₃						
	D	PF ₃						
	You	r answer	[1]					

12 Ethene is reacted with the reagents shown below.

Which row correctly describes the products?

	Hydrogen and platinum	Hydrogen bromide	Steam/phosphoric acid with heat and pressure
Α	ethane	1,2-dibromoethane	ethanal
В	ethane	bromoethane	ethanol
С	no reaction	1,2-dibromoethane	ethanol
D	no reaction	bromoethane	ethanal

Your answer			[1]

13 What mass of Na_2CO_3 is needed to make up 250 cm³ of a 0.100 mol dm⁻³ solution?

(Na, 23; C, 12; O, 16)

- **A** 2.65 g
- **B** 3.57 g
- **C** 10.6g
- **D** 26.5 g

Your answer			[1
-------------	--	--	----

14 A compound has the structure shown.

What is a correct property of this compound?

- A It fizzes with NaOH(aq).
- **B** It gives a purple colour with neutral iron(III) chloride.
- **C** It is neutral in solution.
- **D** When it is heated with acidified dichromate(VI), a green solution is formed.

15		er nitrate solution, followed by ammonia solution, is added to solutions of the potassium des.	
	Wha	at is correct?	
	Α	Potassium bromide gives a yellow precipitate, soluble in ammonia.	
	В	Potassium chloride gives a white precipitate, soluble in ammonia.	
	С	Potassium iodide gives a purple precipitate, insoluble in ammonia.	
	D	Potassium iodide gives a white precipitate, partially soluble in ammonia.	
	You	r answer	[1]
16	The	density of a gas is given by mass/volume.	
	Wha	at is a correct expression for the density?	
	Α	p/RT	
	В	$M_{\rm r}p/RT$	
	С	RT/p	
	D	$p/M_{\rm r}RT$	
	You	r answer	[1]
17	Hov	v many unsaturated structural and <i>E/Z</i> isomers of butene are there?	
	Α	3	
	В	4	
	С	5	
	D	6	
	You	r answer	[1]

18 The mass spectrum of $(C_3H_7)_2O$ has peaks at m/z 103, 102, 43 and other values.

What is correct?

- **A** 102 is caused when the molecule gains an electron in the mass spectrometer.
- **B** 103 is caused by the presence of ²H in the molecule.
- **C** The peaks at other values are caused by fragments of the molecule.
- **D** The peak at 43 is caused by impurities.

Your answer		[1]
-------------	--	-----

19 Ammonia is made by the following reaction.

$$N_2(g) + 3H_2(g) \rightleftharpoons 2NH_3(g)$$

40 cm³ of hydrogen is reacted with excess nitrogen.

10 cm³ of ammonia is found in the equilibrium mixture.

All volumes are measured at the same temperature and pressure.

What volume of hydrogen remains?

- **A** 15 cm³
- **B** 20 cm³
- **C** 25 cm³
- **D** $30 \, \text{cm}^3$

20 What represents the enthalpy change of neutralisation of sulfuric acid?

$$\mathbf{A} \quad \mathrm{H_2SO_4} \, + \, \mathrm{2NaOH} \, \rightarrow \, \mathrm{Na_2SO_4} \, + \, \mathrm{2H_2O}$$

$$\mathbf{B} \quad \tfrac{1}{2} \mathsf{H}_2 \mathsf{SO}_4 \, + \, \mathsf{NaOH} \, \longrightarrow \, \tfrac{1}{2} \mathsf{Na}_2 \mathsf{SO}_4 \, + \, \mathsf{H}_2 \mathsf{O}$$

$$\mathbf{C} \quad \mathrm{H_2SO_4} \, + \, \mathrm{2Na} \, \longrightarrow \, \mathrm{Na_2SO_4} \, + \, \mathrm{H_2}$$

$$\mathbf{D} \quad \tfrac{1}{2} \mathsf{H}_2 \mathsf{SO}_4 \, + \, \mathsf{Na} \, \rightarrow \, \tfrac{1}{2} \mathsf{Na}_2 \mathsf{SO}_4 \, + \, \tfrac{1}{2} \mathsf{H}_2$$

Your answer [1]

SECTION B

Answer **all** the questions.

21 Vinyl chloride, CH_2CHCl , is an important industrial chemical as it can be polymerised to make the polymer polyvinyl chloride, PVC.

The flowchart below shows how PVC is made.

CH ₂ =	$= CH_2 \qquad \begin{array}{c c} \text{Reaction 1} \\ \hline \end{array} \qquad \begin{array}{c c} CH_2ClCH_2Cl \end{array} \qquad \begin{array}{c c} \text{Reaction 2} \\ \hline \end{array} \qquad \begin{array}{c c} CH_2=CHCl \end{array} \qquad \begin{array}{c c} \hline \end{array}$	PVC
compo	ound A vinyl chloride	
(a) (i)	Give the systematic names for compound A and vinyl chloride.	
	vinyl chloride	
(ii)	Draw a dot-and-cross diagram for vinyl chloride.	
		[2]
(iii)	Give the reagent for Reaction 1.	
(iv)	Draw the repeating unit of the structure of PVC.	[1]

(b)	Vinyl chloride reacts with HBr in an electrophilic addition reaction. Possible products are $\mathrm{CH_2BrCH_2C}l$ and $\mathrm{CH_3CHBrC}l$.							
	There is not an equal mix of products. The carbocation with more hydrogen atoms on one of its carbon atoms is the more stable.							
	Predict the main product of the reaction, giving your reasons.							
	[2]							
(c)	Both compound A and vinyl chloride have instantaneous dipole-induced dipole intermolecular bonds. Vinyl chloride also has permanent dipole-permanent dipole intermolecular bonds.							
	Explain how both these types of intermolecular bonds arise and predict, with a reason, which of compound A and vinyl chloride has the higher boiling point.							
	[5]							

22		Ame rby'.	erican Environmental Protection Agency (EPA) describes ozone as 'Good up high, bad
	(a)	(i)	State two polluting effects of ozone in the troposphere .
			1
			2
			[2
		(ii)	According to the EPA, exposure to 0.07 ppm of ozone for 8 or more hours is dangerous.
			A scientist measures the ozone concentration in the air of a town as 1.0×10^{-6} %.
			Is this a dangerous ozone concentration? Show your calculation.
			[1]
	(b)	In th	ne stratosphere, ozone acts as a sunscreen, blocking out high-energy UV radiation.
		Give	e one way in which high-energy UV is harmful to humans.
			F-4
			[1

(c)	Chl	oroalkanes decompose to chlorine radicals in	the stratosphere.	
	(i)	Chlorine radicals catalyse the breakdown o	f ozone.	
		The catalytic process can be shown by two reaction 22.2.	equations. Write the equation for	
		$Cl + O_3 \rightarrow ClO + O_2$	Reaction 22.1	
			Reaction 22.2	[1]
	(ii)	Give the equation for a possible termination	reaction to end this sequence.	
				[1]
(d)	CH	$_3\mathrm{CH}_2\mathrm{C}\mathit{l}$ is a chloroalkane that decomposes in	n the stratosphere.	
	CH	$_{3}\text{CH}_{2}\text{C}l \rightarrow \text{CH}_{3}\text{CH}_{2} + \text{C}l$	Reaction 22.3	
	The	e bond energy of the C-Cl bond is +346 kJ mo	ol ^{−1} .	
	Cal	culate the frequency of radiation required to	break this bond.	
(a)	СН	frequence $_3$ CH $_2$ C l reacts with hydroxide ions as shown	cy =Hz	[3]
(6)	·	$_3^3$ CH $_2$ C l + OH $^ \rightarrow$ CH $_3$ CH $_2$ OH + C l^-		
	Cor	mpare reactions 22.3 , in part (d) , and 22.4 in Cl bond is broken.		he

© OCR 2022

23 Sodium hypochlorite, NaOC l, is a chemical present in chlorine bleaches.

It a	It acts as a bleach by oxidising stains to colourless compounds.		
(a) Give the systematic name for NaOC1.		e the systematic name for NaOC1.	
		[1]	
		dium hypochlorite is made by electrolysing brine, $NaCl(aq)$, and allowing the products to .	
	(i)	Give the half-equation for the reaction at the ${\bf positive}$ electrode when NaC $l({\bf aq})$ is electrolysed.	
		[1]	
	(ii)	Give the half-equation for the production of hydroxide ions (and a gas) at the negative electrode when $NaCl(aq)$ is electrolysed.	
		[1]	
	(iii)	Suggest the equation for the two electrode products reacting to give OCl^- ions.	
		[1]	
(c) The concentration of a bleach in solution can be measured by reacting the bleach wire acidified iodide ions. The iodine that is formed is then titrated with sodium thiosulfate solution.		dified iodide ions. The iodine that is formed is then titrated with sodium thiosulfate	
	ОС	$l^- + 2I^- + 2H^+ \rightarrow Cl^- + I_2 + H_2O$ Equation 23.1	
	2S ₂	$O_3^{2-} + I_2 \rightarrow S_4 O_6^{2-} + 2I^-$ Equation 23.2	
	(i)	State which atoms are being oxidised in equation 23.2 and give their change in oxidation state.	
		is being oxidised from to	
	(ii)	A group of students measure out 25 cm ³ of a bleach solution in a measuring cylinder and pour it into a conical flask. The students add excess hydrochloric acid and excess potassium iodide solution. They are supplied with 1.60 mol dm ⁻³ sodium thiosulfate solution.	
		Describe how the students should go on to obtain the results to calculate the average titre of sodium thiosulfate needed. They add starch solution near the end point.	
		[31	

(iii)	The students find that $25\mathrm{cm^3}$ of the bleach solution needs $20.3\mathrm{cm^3}$ of $1.60\mathrm{moldm^{-3}}$ sodium thiosulfate.
	Calculate the concentration of NaOC l in the bleach solution in g dm $^{-3}$.
	Give your answer to an appropriate number of significant figures.
	concentration of NaOCl = g dm ⁻³ [4]
(iv)	The students are told that they should have used a volumetric pipette rather than a measuring cylinder to measure out 25 cm ³ of bleach.
	What effect would this have on your answer to part (iii)?
	[1]

24 Some students study the equilibrium shown in equation 24.1.

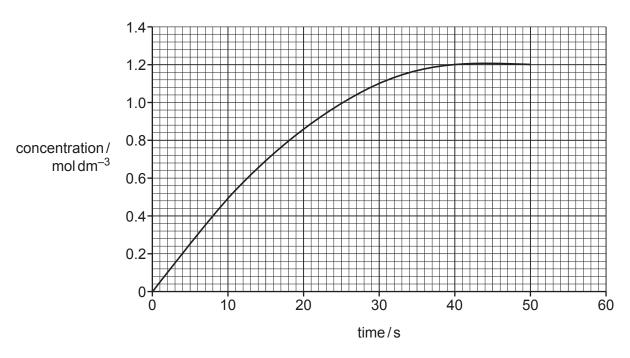
$$N_2O_4(g) \iff 2NO_2(g) \Delta H = +58 \text{ kJ mol}^{-1}$$

Equation 24.1

(a) The reaction is in dynamic equilibrium.

Describe what is happening to the concentrations of the gases and the rates of the forward and back reactions at equilibrium.

concentrations


rates

[2]

At 298 K mostly N₂O₄ is present in the equilibrium in **equation 24.1**.

A $1.0\,\mbox{dm}^3$ flask contains the equilibrium mixture at 298 K.

The flask is placed in an oil bath at $600\,\mathrm{K}$ and the students find data for the changing NO_2 concentration. They plot these on the graph below.

(b) The concentration of $\rm N_2O_4$ starts at 1.0 mol dm⁻³ and reaches equilibrium again at 0.40 mol dm⁻³.

Sketch a line on the axes above to show how the concentration of $\mathrm{N}_2\mathrm{O}_4$ changes.

(c)	Use data from the graph to calculate the numerical value of $K_{\rm c}$ for the equilibrium in equation 24.1 at 600 K.
(d)	$K_{\rm c}$ value =
()	
(e)	The students find data for repeating the experiment with the oil bath at 700 K.
	They notice that after 10 s the concentration of NO_2 is 0.60 mol dm ⁻³ .
	Explain this observation with the relevant chemistry.
	[2]

END OF QUESTION PAPER

ADDITIONAL ANSWER SPACE

If additional space is required, you should use the following lined page(s). The question number(s) must be clearly shown in the margin(s).		
•••••		

Copyright Information

OCR is committed to seeking permission to reproduce all third-party content that it uses in its assessment materials. OCR has attempted to identify and contact all copyright holders whose work is used in this paper. To avoid the issue of disclosure of answer-related information to candidates, all copyright acknowledgements are reproduced in the OCR Copyright Acknowledgements Booklet. This is produced for each series of examinations and is freely available to download from our public website (www.ocr.org.uk) after the live examination series.

If OCR has unwittingly failed to correctly acknowledge or clear any third-party content in this assessment material, OCR will be happy to correct its mistake at the earliest possible opportunity.

For queries or further information please contact The OCR Copyright Team, The Triangle Building, Shaftesbury Road, Cambridge CB2 8EA.

OCR is part of Cambridge University Press & Assessment, which is itself a department of the University of Cambridge.